

PAVEMENT PRESERVATION TREATMENTS & LIFE CYCLE COST EVALUATION

Joel Ulring | Pavement Preservation Engineer Office of Materials and Road Research

Minnesota County Engineers Association Annual Conference

January 18, 2022

mndot.gov

• Review Life Cycle Costs of Various PM Treatments

• Resources

Questions

I received this drawing in an email from a County Engineer:

Background:

- 25 year old pavement
 - oxidized surface
 - High severity transverse cracking
 - cupped cracks (¾"-1" deep x 12"-18" wide)
- AADT ≈ 300 and serves local grain elevator
- Pavement strength is sufficient
- County is planning a 2" overlay

What to do?

Options:

- Do nothing and overlay
- Tack and fill (level) cupped cracks with fine HMA mix
- Fill (level) with void filler (Mastic)
- Mill and overlay with HMA
- Micromill and place a thin surface treatment

How is the "Best Option" evaluated & selected?

- Past practice/experience DWHAD - Do what we have always done
- Try something new and observe
- Ask others
- Life Cycle Cost Analysis LCCA

Life Cycle Cost Analysis for PM Treatments

- Calculate treatment cost
- Understand the treatment life expectancy
- Assess the treatment's annualized Life Cycle Cost

(Looking at total cost doesn't always give true picture)

Annualized Treatment LCCA

Treatment Cost ÷ Life Expectancy (years)

Let's evaluate the Life Cycle Cost for the Pavement Preservation Treatments in this situation.

A per mile cost is being used to more easily compare annualized life cycle costs between treatments.

Treatment Life Cycle (expectancy) defined:

When pavement distresses (cracking, rutting, ride, etc.) have reached a level requiring action. Not necessarily that the treatment itself has failed.

Do nothing and overlay

- No crack repair cost
- Reflective cracking and cupped cracks will return
- Expect initial fair ride improvement, but this will decline more quickly than the other options.
- Expected treatment life of 8 years
- Overlay cost (2" thick by 24' wide at \$60/ton) = \$93,000/mile
- Life cycle cost = \$93,000/mile/8 years = \$11,625/mile/year

Tack and fill with fine gradation HMA mix and overlay

- Crack repair cost ≈ \$6,000/mile (materials & labor)
- Reflective cracking will return
- Expect fair ride improvement
- Expected treatment life of 10 years
- Overlay cost (2" thick by 24' wide at \$60/ton) = \$93,000/mile
- Life cycle cost = \$99,000/mile/10 years = \$9,900/mile/year

Fill with Mastic and overlay

- Crack repair cost ≈ \$7,000/mile (\$4,000 + labor/mile)
- Reflective cracking will return
- Expect fair ride improvement
- Expected treatment life of 10 years
- Overlay cost (2" by 24' wide at \$60/ton) = \$93,000/mile
- Life cycle cost = \$100,000/mile/10 years = \$10,000/mile/year

Mill and overlay

- Traditional milling cost (2" @ \$0.95 SY) ≈ \$16,000/mile
- Reflective cracking will return
- Expect excellent ride improvement
- Expected treatment life of 10 years
- Overlay cost (2" by 24' wide at \$60/ton) = \$93,000/mile
- Life cycle cost = \$109,000/mile/10 years = \$10,900/mile/year

Other Options: Thin Surface Treatments

- Chip Seal
- Slurry Seal
- Micro-surfacing
- Thinlay (≤ 1" thick)
- UTBWC (³/₈"-³/₄" thick)

Not all Thin Surface Treatments improve ride quality

Combine with Micromilling

1/20/2022

What is Pavement Micromilling?

Micromilling vs traditional milling:

• Ideal for removing $\approx 1^{"}$ of pavement.

Traditional Milling Head Teeth spaced about 0.625 inches apart

Micromilling Head Teeth spaced 0.200 inches apart

- Micromilling head has 3 times the number of milling teeth or points.
- Tighter lacing pattern = smoother finished surface.

Micromill and chip seal

- Micromilling cost (\$1.00/SY = \$17,080/mile)
- Expect excellent ride improvement
- Expected treatment life of 8 years
- Chip seal cost = \$25,000/mile
- Life cycle cost = \$42,080/mile/8 years ≈ \$5,250/mile/year

Micromill and micro-surfacing

- Micromilling cost (\$1.00 SY) = \$17,080/mile
- Expect excellent ride improvement
- Expected treatment life of 8 years
- Micro-surfacing cost (2 lifts @ \$5.75 SY) = \$40,500/mile
- Life cycle cost = \$98,080/mile/8 years = \$12,260/mile/year
- LCC based on 10 year life = \$9,800/mile/year

Micromill and thinlay overlay

- Micromilling cost (\$1.00) = \$17,080/mile
- Expect excellent ride improvement
- Expected treatment life of 8 years
- Thinlay cost (1" by 24' wide at \$75/ton) = \$60,000/mile
- Life cycle cost = \$67,080/mile/8 years = \$8,400/mile/year

Micromill and UTBWC

- Micromilling cost (\$1.00 = \$17,080/mile
- Expect excellent ride improvement
- Expected treatment life of 12 years
- UTBWC cost (1/2" by 24' wide at \$120/ton) = \$63,400/mile
- Life cycle cost = \$80,480/mile/12 years = \$6,700/mile/year

Let's Summerize

<u>Treatments</u>	<u>Initial</u> Cost/Mile	Expected <u>Treatment Life</u>	Annualized <u>Cost/Mile</u>
Do nothing and overlay	\$93,000	8 Years	\$11,625
Tack and fill with fine HMA mix and overlay	\$98,080	8 Years	\$ 9,900
Fill with Mastic and overlay	\$100,000	10 Years	\$10,000
Mill and overlay	\$109,000	10 Years	\$10,900
Micromill and chip seal	\$42,080	8 Years	\$ 5,250
Micromill and micro-surfacing	\$98,080	8 Years	\$ 9,800
Micromill and thinlay	\$67,080	8 Years	\$ 8,400
Micromill and UTBWC	\$80,480	12 Years	\$ 6,700

To get the most out of your **Pavement Preservation budget** you should be looking at Life Cycle costs!

Two questions drive pavement management

- What is the best treatment for this pavement now?
- What combinations of treatments over time will maximize the life of this pavement?

Today's presentation focused on the first question. Your challenge is to address the second question.

Resources

Pavement Condition

RESOURCES:

1/20/2022

- MnDOT Pavement Preservation Manual
- MnDOT Maintenance Manual Chapter 3: Smooth Roads
- PPRA Pavement Preservation & Recycling Alliance
 www.roadresource.org

November	29, 2018	Maintenance Manual	Smooth Road
		Chapter 3	
		SMOOTH ROADS	
		Table of Contents	
3-1.0	INTRODUC	TION	
3-2.0		Y OF PAVEMENT MANAGEMENT	
	DEFINITIO	<u>NS</u>	
3-2.01		TRUCTURE AND ROADBED COMPONEN	
3-2.02	PAVEMENT F	EATURES	
3-2.03	PERSORMAN	CE CHARACTERISTICS	
0.5.04	1 210 (1000)	CE CHARGE TERISTICS	
3-3.0	OPERATIO	NS SAFETY.	
3-4.0		NCE OF ROADWAY SURFACE	
3-4.01	MAINTENANC	E PRIORITIES	
3-4.01.01	FIRST PRIOR	UTY	
3-4.01.02	SECOND PRI	ORITY	
3-4.01.03	THIRD PRIOR	NTY	
3-4.02	ASPHALT PA	VEMENT MAINTENANCE R OVERLAVING BITUMINOUS SURFACE	
3-4.03	CHITERIA PO	IN OVERLAYING BITUMINOUS SURPACE OF SURFACE TREATMENTS FOR ASPHA	2
3-4.04.01		E OURFACE TREATMENTS FOR ASPRA	
34 04 01 01			
3-4.04.01.02			
3-4.04.01.03			
3-4.04.01.04		4.5	
3-4.04.01.05		ACINO.	
3-4.04.02	THIS HOT-M	IX OVERLAYS	
3-4.04.03		ATCHING	
34 04 04 01	POTHOLE PA	ATCHING	
3-4.04.04.02	CRACK SEAL	LING	
3-4.04.04.03	CRACK FILL	<u>NG</u>	
3-5.0	GENERAL	CONCRETE PAVEMENT MAINTER	IANCE
3-6.0	CONCRETE	PAVEMENT DEFICIENCIES/DIST	RESS
3-6.01	BLOW-UPS A	NO BUCKLING	
3-6.02		("D") CRACKING	
3-6.03		E OR LONGITUDINAL CRACKING	
3-6.04	FALURE OF	LOADED JOINTS	
3-6.05	DADS OR SU	AB SETTLEMENT	
Chapter 3			

Resources

Optimizing Your Network *How to Guide*

Calculators

- Life Cycle Cost
- Equivalent Annualized Cost
- Remaining Service Life
- Cost Benefit Value

Joel Ulring, MnDOT Pavement Preservation Engineer

Questions?