LRRB - DID YOU KNOW!

Minnesota County Engineers Conference 2023

Michael Marti Sue Miller

Introductions

Sue Miller

Michael Marti

Agenda

- Overview of LRRB
- Update on recently completed projects
- TAP members needed
- Status of new research ideas (brainstorming during last fall pre-Screening Board)

The Local Road Research Board

Who is the Local Road Research Board?

Jim Foldesi (Chair) St. Louis County

Kristine Elwood MnDOT State Aid

Brian Giese Pope County

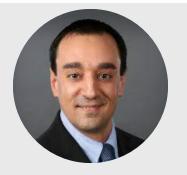
Duane Hill MnDOT D1

Katie Walker MnDOT Research

Matt Leonard City of Monticello

Kyle Shelton MnDOT R&I

Lon Aune Marshall County



Paul Oehme City of Lakeville

Wayne Sandberg Washington County

Who is the Research Implementation Committee?

Will Manchester (Chair)
City of Minnetonka

Kristine Elwood MnDOT State Aid

Ben Worel MnDOT Road Research

Fausto, Cabral MnDOT D1

Guy Kohlnhofer Dodge County

John Brunkhorst McLeod County

TBD

Ryan Thilges Blue Earth County

Stephanie Malinoff U of M CTS

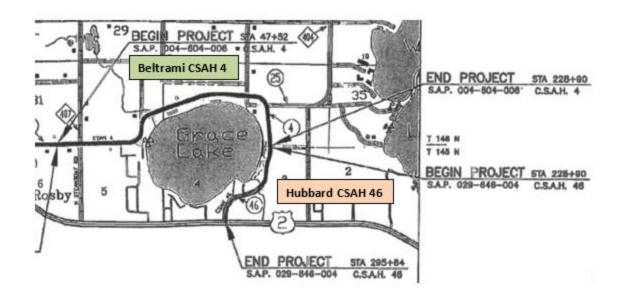
Steve Bot City of St. Michael

Technical Advisory Panel

- Bruce Hasbargen, Beltrami County and TAP Chair
- Jim Foldesi, St. Louis County and LRRB Chair
- Kaye Bieniek, Olmsted County
- Steve Bot, City of St. Michael
- John Brunkhorst, McLeod County
- Jed Nordin, Hubbard County
- Marcus Bekele, MnDOT
- Mike Marti, SRF Consulting Group, Braun Intertec as subcontractor

Evaluation of SFDR Stabilizing Products

Purpose


 Conduct a side-by-side comparison of two stabilizers BASE ONE® and engineered emulsion used for SFDR

Process

- Leverage an existing rehabilitation project on the border of Beltrami and Hubbard counties.
- o Gather data, conduct field testing and report on performance

- Final Deliverable
 - A report including a side-by-side comparison of two commonly used stabilizers, Base One and engineered emulsion in two neighboring counties (Beltrami and Hubbard).

Stabilized Full Depth Reclamation (SFDR)

Evaluation of Two Products:

Base One®

Engineered Emulsion

March, 2022

Michael Marti, PE

2022-06

https://www.dot.state.mn.us/research/reports/2022/2022-06.pdf

Mohammadreza Sabouri, PhD, PE Daniel E. Wegman, PE Braun Intertec Corporation Braun Intertec Corporation SRF Consulting Group, Inc.

	Beltrami County engineered emulsion	Hubbard County Base One®		
Original Structure (reported)	2.75" Bituminous 10.00" Class 3	2.75" Bituminous 4.25" Class 5 12.00" Select Granular		
Initial PQI (prior to rehabilitation)	2.4	2.7		
ADT (reported)	770	370		

	Beltrami County engineered emulsion	Hubbard County Base One®
	engineered emuision	base Offe
Original Structure (reported)	2.75" Bituminous	2.75" Bituminous
	10.00" Class 3	4.25" Class 5
		12.00" Select Granular
Initial PQI (prior to rehabilitation)	2.4	2.7
ADT (reported)	770	370
SFDR Stabilizer	engineered emulsion	BASE ONE®
SFDR Pavement Design (10-ton)	3.5" HMA	3.5" HMA
	5.0" SFDR w/EE	6.0" SFDR w/BASE ONE®
	7.8" Class 3	1.0" Class 5
		12.0" Select Granular
Stabilizer Application Rate	2.9 gallons/sq yd	0.03 gallons/sq yd
	(approximately 30% water)	(Concentrate)
Cost – Construction, per mile	\$360,000	\$259,000
Cost – Stabilizer, per mile	\$ 88,391	\$ 10,625

Conclusions

- Both products yielded pavements that exceed their 10-ton design. The engineered emulsion, using a GE factor of 1.5 produced a higher capacity pavement;
 BASE ONE® GE factor was 1.25.
- o Engineered emulsion requires a mix design; has a higher application rate and cost more per mile.
- o The engineered emulsion sections were able to be cored and tested (tensile strength); the BASE ONE® sections did not yield a bound layer that could be tested in the laboratory.
- o After one-year low severity transverse cracking occurred within both sections; the engineered emulsion section had fewer cracks per mile.

	Daltuana	: Cat	Undahan	l Carreti.		
		i County		l County		
		d emulsion	Base One®			
Original Structure (reported)	2.75" Bitum		2.75" Bituminous			
	10.00" Class	3	4.25" Class 5			
				12.00" Select Granular		
Initial PQI (prior to rehabilitation)	2	.4	2.7			
ADT (reported)	7	70	37	70		
SFDR Stabilizer	engineere	d emulsion	BASE	ONE®		
SFDR Pavement Design (10-ton)	3.5" HMA		3.5" HMA			
	5.0" SFDR	w/EE	6.0" SFDR w	/BASE ONE®		
	7.8" Class 3	3	1.0" Class 5			
			12.0" Select	Granular		
Stabilizer Application Rate	2.9 gallo	ns/sq yd	0.03 gallons/sq yd			
	(approximate	ly 30% water)	(Concentrate)			
Cost – Construction, per mile	\$360,00	00	\$259,000			
Cost – Stabilizer, per mile	\$ 88,391		\$ 10,6	25		
Tests Results						
CBR, average (calculated from DCP testing)	Before	29-31	Before	28-31		
	After	33-34	After	17-25		
Core Results (Tensile Strength)	2020	2021	2020	2021		
Dry Indirect	38	39	unbound	l, no test		
Conditioned Indirect	20	25	unbound, no test			
FWD Results (capacity, tons/axle)	2020	2021	2020	2021		
Effective Capacity (15th percentile)	12.1	11.9				
FWD Results (R-value)	25.8		24.2			
Pavement Condition L-severity transverse cracks per mile	8.3		45			

Pavement Marking Decision Tree - Project Level

For a new surface or replacing existing markings with a different material

Technical Advisory Panel

- . Jon Pratt (Technical Liaison/Chair), City of Detroit Lakes
- Marcus Bekele, MnDOT (Project Coordinator)
- · David Glyer, MnDOT
- Eddie Johnson, MnDOT
- · Ethan Peterson, MnDOT
- HunWen Westman, City of St. Paul
- Matt Zinniel, Stearns County
- Mitch Bartelt, Washington County
- . Vic Lund, St. Louis County

Pavement Marking Guide

Purpose

o To assist agencies in understanding their options and determining which pavement marking materials may be considered for a new surface or when replacing existing markings with a different material

Process

- Surveyed cities/counties to understand existing practices
- o Drafted and reviewed with decision tree and content with technical experts and TAP. The materials included:
 - Standard Latex/High Build Latex
 - Multi Component Liquid Markings (Epoxy)
 - Preformed Tape
 - Preformed Thermoplastic
 - Late Season Pavement Markings
 - Recessing Markings to Enhance Performance

Pavement Marking Decision Guide

Implementing a Pavement Marking Best Practice Types of Pavement Marking Materials

latex markings are the least expensive of all pavement

Later markings are the seast expensive of as pavement markings. It is also the least durable of all the markings and is not recommended for roadways with high traffic The following prices are very volatile and will increase in

MnDOT striping business costs for 2021 were: 4" wide \$0.054/ft (add \$0.01 for 2022)

 6" wide \$0.069/ft (add \$0.015 for 2022) 4" wide High Build WR \$0.179 (maintenance only

and does not include the cost of grooving)

and does not include the cost of grooving) MEDOT Construction costs (Nust open PDF, Average bid prices will fall in 2592 Bid). The following are based on MnDOT 2021 prices for construction contracts.

6" wide High Build WR \$0.250 (maintenance only

Linear or Longitudinal markings (centerlines and edgelines):

4" wide \$0.06 to \$1.52, average for larger projects

6" wide \$0.06 to \$9.45, average for larger projects

Costs for surface applied High Build Latex with dry

4" wide High Build Latex (WR) \$0.15 to \$2.20,

6" wide High Build Latex Ground in (WR) \$0.44 to

\$5.95, average for larger projects \$0.44/ft

Latex for Crosswalks \$2.05 to \$8.09, average for

larger projects \$3.11/square foot High Build Latex Ground In (WR) Crosswalk, \$8.00 to

\$10.00, average \$8.33/square foot Latex for Messages \$2.45 to \$20.00, average for

larger projects \$6.28/square foot

\$32.40, average \$15.00/square foot

High Build Latex Ground In (WR) Message, \$7.00 to

Local Road Research Board

reflective glass beads are unavailable.

average for larger projects 50.25/ft 6" wide High Build Latex (WR) \$0.22 to \$0.58,

average for larger projects \$0.38/ft 4" wide High Build Latex Ground In (WR) 50.30 to 52.42, average for larger projects \$0.37/ft.

Transverse, Crosswalks and Messages:

Latex Paint - Standard

A pavement marking that is water-based. It is typically A pavement marking that is water-based, it is typically considered a conventional material. Latex is a quick dry material, it is also referred to as water-borne paint.

High Build Latex Paint can be use either dry reflective glass right sound Latex traint can be use either dry reflective glass-badds or wer reflective elements. When using wet reflec-tive elements, the marking must be recessed or ground in to protect the reflective elements.

2582 Pavement Markings (2020 edition)

B.2 Concrete Surface Preparation

Before applying Multi Comp or Paint markings on new Portland cement concrete surfaces, remove surface treatments or laitance unless the marking is recessed per 2582.38.7, "Recessing."

Before applying non-recessed permanent pavement markings, allow bituminous pavement to cure a minimum of 10 Calendar Days (or follow manufacturer's specifications for calendar Days (or follow manufacturer's specifications for Calendar Days for rosow manuaccurer a approximations of pavement cure time, whichever is greater), unless other

8.7 Recessing – See Grooving to Recess Pavement Markings

s. a netroreneouse needule

For Point tinear markings that are not WR, apply glass beads

sportfled in 3592 "Drop-On: Glass Beads" immediately after

applying a Point line at a rate of at least 8 pounding greg gal.

applying a Point line at a rate of at least 8 pounding greg gal.

property beads at a greater rate of recommended by the man
property beads at a preater rate of recommended by the man
in accordance with Table 3582-3-2.

For WR markings, apply wet reflective media per manufac-

Evenly distribute retroreflective media on pavement

Deliverables

- o A clickable decision tree to guide agencies through the decisionmaking process.
- each pavement marking material for an in-depth
- o General "Did You Know" Q&A one-pager, and additional resources for more information.

Tool Demo

- o Summary one-pagers on

Pavement Marking Decision Tree - Project Level ment Marking Ope Pavement Markings: Epoxy Paints and Thick Coats Perform Best on Challenging lop Performance Metrics MnDOT Rumble Strips Start the Decision Tree Is the air and pavement temperature >40 degrees F? **Longitudinal Lines** What is your surface type? Concrete/Asphalt Do you want wet recoverable or wet reflective markings? Do you want enhanced service

Pavement Markings: Epoxy Paints and Thick Coats Perform Best on Challenging Asphalt Surfaces

Resources

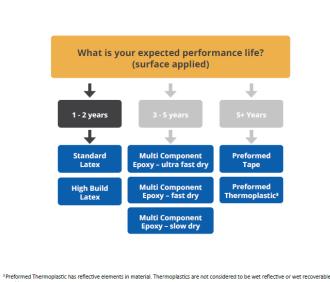
The Local Road Research Board, June 2016

What is your expected performance life?

1 - 2 years

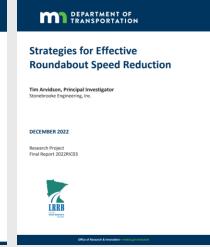
The report provides a detailed account on which pavement markings approaches perform best on chip seals and/or microsurfacing practices. Agencies who practice these techniques and want to learn more and understand how to overcome challenges they face may want to review the report further. The report goes in-depth on the best practices for application and what to keep in mind when considering chip seal or microsurfacing. The report reviews existing practices and compares them to the performance of various pavement marking test sections to identify which held up the best. The report includes many images and graphs of the product results for

For those interested in a higher-level summary, review the key findings at the end of


https://www.dot.state.mn.us/research/TS/2016/201608.pdf

Technical Summary https://www.dot.state.mn.us/research/TS/2016/201608TS.pdf

Pavement Marking Decision Tree - Project Level


Additional Recently Completed Projects

- 20 Tips to Up Your Social Media Game (202215)
- Impacts of Deferred Maintenance in Minnesota (202208)
- Reuse of Regional Waste in Sustainably
 Designed Soils (202210)
- Minnesota Snow and Ice Field Handbook for Snowplow Operators Update (2022RIC01)
- Strategies for Effective Roundabout Speed Reduction (2022RIC03)

The LRRB Needs YOU!

- Your participation would entail:
 - o Directing the research
 - Attending 4-5 meetings (approximately 2 hours each virtual/in-person.
 - o Reviewing and approving task products
- If you are interested, sign up by scanning the QR code or visiting www.surveymonkey.com/r/7cvl8ln

Any questions, contact Sue or Mike

www.surveymonkey.com/r/7CVL8LN

If you would like to serve on a technical advisory panel (TAP) for any of the following projects, please scan the QR code or visit the website to submit your selection.

Questions? Sue Miller samiller@srfconsulting.com and Mike Marti mmarti@srfconsulting.com

Bridge and Structures

- · Understanding Driving Causes of Bridge Replacement
- Deck Reinforcement Detailing and Concrete Mix Additives to Reduce Bridge Deck Cracking

Environmenta

- Development of Biochar Specification Criteria as Soil Amendment for Slopes, Conveyances and Stormwater Treatment Systems
- · Assessment of Efficacy and Environmental Effects of Sodium Chloride Alternatives
- Wet Pond Modeling for Contaminant Retention and Maintenance

Equity

Advancing Equity in Capital Investment Decision-Making

Implementation

- Impacts on Design Standards Related to Speed
- Safety: Developing Tools to Address Behavioral Factors
- Promoting a Career as a County/City Engineer
- Sealcoats: Synthesis of Minnesota Research
- Asphalt Rejuvenators
- CIP Tool
- Public Works 101 for Elected Officials & the Public
- Rural Guidelines on Prescriptive ROW
- Impacts on Design Standards Related to Speed
- Expanding the Transportation Workforce: Roadway Maintenance Workers
- Gravel Shoulder Maintenance

Maintenance Operations

- · Human-Centered Testing of Rear-Facing Display to Reduce Vehicle Collisions with Snowplows
- Fleet Life Cycle

Materials and Construction

- · Pavement Design: Performance of Base versus Subbase
- Use of Plastics in Road Materials (Paving)
- Sawing and Sealing Joints in Bituminous Pavements to Control Cracking
- Investigation on Mix Design of Recycled Asphalt Pavement (RAP) Materials

Policy and Planning

Impacts of Shared Mobility on Infrastructure Usage, Greenhouse Gas Emissions, and Accessibility

roffic and Safatu

- · Improving Safety for People Walking and Biking at Roundabouts
- Behavioral Investigation of Temporary and Permanent Pedestrian Infrastructure
- Right-Turn Lane Safety Improvements for Pedestrians

2023 Research Projects

Bridge and Structures

- Understanding Driving Causes of Bridge Replacement
- Deck Reinforcement Detailing and Concrete Mix Additives to Reduce Bridge Deck Cracking

Environmental

- Development of Biochar Specification Criteria as Soil Amendment for Slopes, Conveyances and Stormwater Treatment Systems
- Assessment of Efficacy and Environmental Effects of Sodium Chloride Alternatives
- Wet Pond Modeling for Contaminant Retention and Maintenance

Equity

Advancing Equity in Capital Investment Decision-Making

Implementation

- Impacts on Design Standards Related to Speed
- Safety: Developing Tools to Address Behavioral Factors
- Promoting a Career as a County/City Engineer
- Sealcoats: Synthesis of Minnesota Research
- Asphalt Rejuvenators
- Safety: Developing tools for engineers to address behavioral factors improving local road safety
- CIP Tool
- Public Works 101 for Elected Officials & the Public
- Rural Guidelines on Prescriptive ROW
- Impacts on Design Standards Related to Speed
- Expanding the Transportation Workforce:
 Roadway Maintenance Workers
- Gravel Shoulder Maintenance

2023 Research Projects

Maintenance and Operations

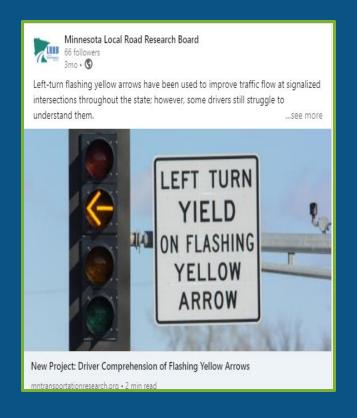
- Human-Centered Testing of Rear-Facing Display to Reduce Vehicle Collisions with Snowplows
- Fleet Life Cycle

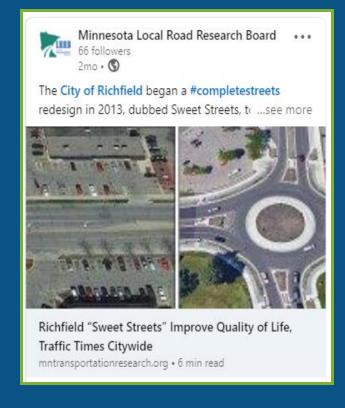
Materials and Construction

- Pavement Design: Performance of Base versus Subbase
- Use of Plastics in Road Materials (Paving)
- Sawing and Sealing Joins in Bituminous Pavements to Control Cracking
- Investigation on Mix Design of Recycles Asphalt Pavement (RAP)
 Materials

Policy and Planning

Impacts of Shared Mobility on Infrastructure Usage, Greenhouse
 Gas Emissions, and Accessibility


Traffic and Safety


- Improving Safety for People Waking and Biking at Roundabouts
- Behavioral Investigation of Temporary and Permanent Pedestrian Infrastructures
- Right-Turn Lane Safety Improvements for Pedestrians

Join our LinkedIn Community

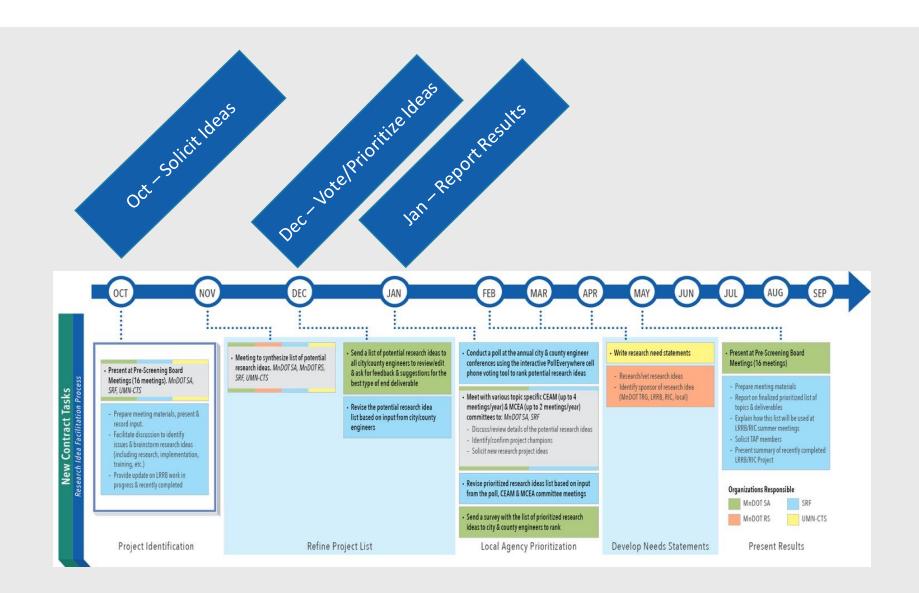
VISIT: Linkedin.com/company/Irrb

MnDOT Library

QUESTIONS? JUST ASK A LIBRARIAN AT dot.state.mn.us/library

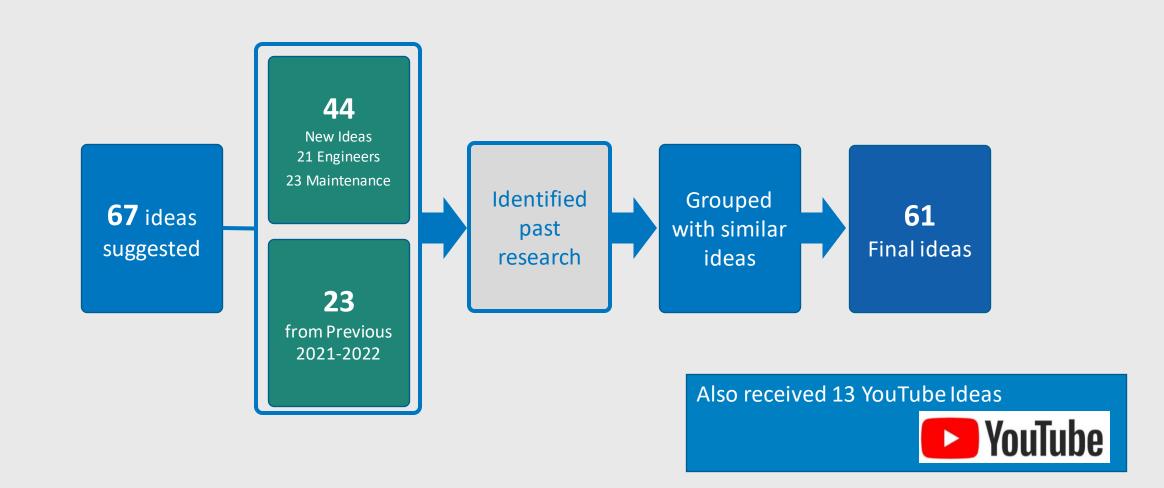
MnDOT Library professionals can provide in-depth research assistance, saving you time, effort and money

Use the "Search the Library" feature at dot.state.mn.us/library/ to research materials on a vast array of topics.


The library provides free access to eBooks

Sign up for email alerts to receive a curated list of news headlines on the transportation topics you care about

The Research Process


Mtg	Date	Dist	County/Muni	Location
1	6-Oct	8	County	Granite Falls
2	11-Oct	7/8	City	Redwood Falls
3	11-Oct	SW	Maintenance	Redwood Falls
4	12-Oct	6	City	Rochester (virtual)
5	12-Oct	NW	Maintenance	Detroit Lakes
6	12-Oct	2/4	County	Detroit Lakes
7	13-Oct	6	County	Owatonna (virtual)
8	13-Oct	2/4	City	Detroit Lakes
9	17-Oct	М	City	Shoreview
10	17-Oct	Metro	Maintenance	Shoreview
11	18-Oct	NE	Maintenance	Virginia
12	19-Oct	7	County	Kasota
13	1-Nov	SE	Maintenance	Rochester

Brainstorming at Prescreening Board Meetings

```
13 Meetings11 Locations150+ Participants
```


Process to Reduce the Number of Ideas

Category

Click any research idea to see full details

Use the arrows to adjust vote count

Remaining Votes 18

Submit »

If you submit now you can return later

Bridge and Structures (5)	_			
Load Posting Implements of Husbandry and Emergency Vehicles for Minnesota's Local Bridge Inventory				
O				
Cost of Precast Concrete Structures Escalating and Delayer Supply	d			
Precast vs. Cast in Place culverts				
Bridge Maintenance - partnership with MnDOT				
Construction/Materials (1)				
Maintenance Operations (24)				
Materials and Construction (6)				
Pavement (1)				
Policy and Planning (15)				
Traffic and Safety (9)				

Full Details

Load Posting Implements of Husbandry and Emergency Vehicles for Minnesota's Local Bridge Inventory

AMC hosted a working group on IOH and there was a recent conference (Alexandria) on IOH. With approximately 15,000 local bridges, developing a representative screening approach for Minnesota's local bridge owners is needed to assure IOH vehicles are properly and consistently evaluated and load posted. Additionally, educational outreach materials are needed for farmers and bridge owners.

Survey Sent to Cities and Counties

Survey Sent to Cities and Counties...results

District	City	County	Total
1	3	5	8
2	0	5	5
3	7	9	16
4	3	7	10
М	38	5	43
6	7	8	15
7	3	12	15
8	0	11	11
Total	61	62	123

And the winners are....

1st Sara Buermann, Wright County

20th Lyndon Robjent, Carver County

23rd Anthony Sellner, Redwood County

Voting Results (page 1 of 2)

Rank	Total	City	County	SA	CategoryName	Item Name
1	144	69	70	5	Materials and Construction	Chip Sealing Bituminous Pavements - Optimal Timing and Benefits
2	140	43	97	0	Policy and Planning	Wage Comparison: Pubic vs Private Sector
3	95	54	41	0	Maintenance Operations	Current Sealcoating Practices
4	93	36	57	0	Policy and Planning	Promote Career as County or City Engineer
5	78	57	21	0	Maintenance Operations	Best Practices: Texas Underseal (Seal Coat Underneath an Overlay)
6	77	55	22	0	Traffic and Safety	Pedestrian Crossings
7	75	23	52	0	Maintenance Operations	CDL License Guide for Maintenance Workers
8	73	55	18	0	Policy and Planning	Right-Of-Way Management (Utilities): Impacts of Abandoned Utilities within the ROW
9	71	8	63	0	Bridge and Structures	Precast vs. Cast in Place culverts
10	67	47	20	0	Materials and Construction	Best Practices for Cost-Effective Material Options for Temporary Patches
11	65	48	17	0	Maintenance Operations	Notifying the Public of Neighborhood Roadway Projects
12	64	34	30	0	Traffic and Safety	Understanding Economic Impacts of Alternative Intersections such as RCIs and Roundabouts.
13	60	33	27	0	Maintenance Operations	Deicing Products User Guide
14	56	35	21	0	Traffic and Safety	RAB Design changes
15	55	8	47	0	Bridge and Structures	Cost of Precast Concrete Structures Escalating and Delayed Supply

Voting Results (page 1 of 2)

Rank	Total	City	County	SA	CategoryName	Item Name
16	55	14	41	0	Maintenance Operations	Best Practices on Roadside Vegetation Management
17	54	20	34	0	Bridge and Structures	Bridge Maintenance - partnership with MnDOT
18	54	43	11	0	Policy and Planning	Managing Private Assests within ROW
19	47	36	11	0	Policy and Planning	Best Practices for Electric Vehicles
20	43	8	35	0	Maintenance Operations	Snowplowing Guidance for Non-Metro Agencies
21	40	8	32	0	Maintenance Operations	Best Practices for Shoulder Maintenance Without a Curb
22	40	17	23	0	Policy and Planning	Best Practice for Oversized/Overweight Vehicles
23	39	29	10	0	Maintenance Operations	Career/Expo Day for Recruiting Maintenance Workers
24	39	12	27	0	Policy and Planning	The Future of Weigh Tickets
25	37	10	27	0	Policy and Planning	FHWA Pavement Marking Retroreflectivity Mandate
26	36	22	14	0	Traffic and Safety	User Understanding of Pedestrian Hybrid Beacon Operation
27	34	12	22	0	Maintenance Operations	Best Practices for Mowing in the Right-of-Way
28	34	12	22	0	Maintenance Operations	Develop App for using iPad /Tablet to Measure Stockpiles
29	33	19	14	0	Maintenance Operations	Quick Reference on OSHA Procedures
30	32	25	7	0	Maintenance Operations	Best Practices for Snowplowing in Mini-Roundabouts

Idea Solicitation Schedule:

Thank You!

Sue Miller
Director
sgmiller@srfconsulting.com

Michael Marti
Director
mmarti@srfconsulting.com